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Excitation of gap solitons, soliton trains, and soliton sets in finite-sized
two-dimensional photonic crystals

Ping Xie and Zhao-Qing Zhang
Department of Physics and Institute of Nano Science and Technology (INST), The Hong Kong University of Science

and Technology, Clear Water Bay, Hong Kong, China
~Received 15 August 2003; published 8 March 2004!

We study in detail the excitation of gap solitons in finite-sized two-dimensional photonic crystals under
various kinds of source configuration, including two external beams along different incident directions and a
point source at different locations inside the sample. We find different types of gap solitons, such as soliton
trains along different symmetry axes of the photonic crystal and soliton sets with a higher rotational symmetry.
In the case of a single external beam, we find the existence of an optimal beamwidthdopt for the excitation of
gap solitons, and the value ofdopt is close to the diameter of single localized envelopes of the excitation. In the
case of a point source, it is found that the excitation threshold depends only on the distance between the source
and the nearest cylinder, and its value increases nearly exponentially with distance.
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I. INTRODUCTION

Since Yablonovitch@1# and John@2# first proposed that a
periodic dielectric structure~photonic crystal! can exhibit a
forbidden gap for the propagation of electromagnetic wav
photonic band gap materials have attracted considerable
terest both theoretically and experimentally@3#. To employ
the high-technology potential of the photonic crystal, it
also crucially important to achieve dynamical tunability
its band gap. One idea of dynamical tunability can be re
ized by changing the light intensity in so-callednonlinear
photonic crystals. Recently, much interest has been focus
on the study of nonlinear optical properties of photonic cr
tals @4#.

One of the important phenomena in nonlinear photo
crystals is the existence of nonlinearity-induced se
organized localized states with frequency in the forbidd
gaps, which are usually called gap solitons. The term ‘‘g
soliton’’ was first introduced by Chen and Mills in their nu
merical study of a one-dimensional~1D! Kerr nonlinear su-
perlattice@5#. Later, much interest was focused on the stu
of gap solitons in 1D superlattices@6#. Recently, John and
Akozbek@7# showed the existence of gap solitons in 2D a
3D nonlinear photonic crystals by using coupled-mo
theory, which is valid for small dielectric modulations. B
using the numerical Green’s function, Mingaleev a
Kivshar @8# demonstrated the existence of stable gap solit
in a 2D photonic crystal with a large dielectric contra
However, it is also of considerable importance to study
excitation of gap solitons in finite-sized 2D photonic cryst
using external sources, i.e., the coupling of external sou
to the gap soliton. In our recent paper, we demonstrated
excitation of a single gap soliton and soliton trains along
G-M direction by use of an external slit beam incident up
a finite-sized 2D photonic crystal in a square lattice@9#. In
the present work, we study in detail the excitation of g
solitons in finite-sized 2D square photonic crystals using
ferent source configurations. Other types of soliton tra
possessing different symmetries have been found. In par
1063-651X/2004/69~3!/036601~7!/$22.50 69 0366
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lar, we find soliton trains along theG-X direction by using a
source with two perpendicular beams along theG-M direc-
tion. These soliton trains are difficult to excite by using
single beam along theG-X direction. We also find a soliton
set with a higher symmetry by using a point source loca
inside the sample. A soliton set consists of a pair of tw
soliton trains attached to each other. In addition, we h
studied the properties of gap soliton excitation. In the cas
a single external beam, we find that there exists an opti
beamwidth at which the threshold of the incident energy fl
is the smallest. The optimal beamwidth is close to the dia
eter of the localized envelopes of the excitation. In the c
of a point source, we find that the threshold of the incide
amplitude depends only on the distance between the p
source and the nearest cylinder and its threshold value
creases nearly exponentially with distance.

II. MODEL AND CALCULATION METHOD

We consider a 2D square lattice of dielectric cylinders
air. The radius of the cylinder isR50.1a, with a the period
of the lattice. The dielectric cylinders are Kerr nonline
characterized by the usual, weak-field dielectric constant«0
and the Kerr coefficientl. Two finite-sized photonic sample
are used in our calculations, which are shown in the ins
of Figs. 1~b! and 1~c!. The sample in Fig. 1~b! consists of
113111113105231 cylinders and that in Fig. 1~c! consists
of 163165256 cylinders. We assume that the cylinders a
parallel to thez axis so that the crystal is characterized by t
dielectric constant«(x,y). E-polarized light, with the fre-
quencyv52p f , propagating in the (x,y) plane satisfies the
following Maxwell equation:

¹2E~x,y!1
v2

c2 «~x,y!E~x,y!50, ~1!

whereE(x,y) is thez component of the electric field andc is
the speed of light in vacuum. The dielectric constant«(x,y)
is taken as follows: «(x,y)5«b51 in air and
©2004 The American Physical Society01-1
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FIG. 1. ~a! Band structure ofE-polarized wave for a square lattice of linear dielectric–cylinders with radiusR50.1a and dielectric
constant«0513 in air, wherea is the–period of the lattice.~b! Transmission coefficient of a slit beam input from the left face of the lin
crystal depicted in the inset.~c! Total radiation power spectrum from a point source inside the linear sample shown in the inset of~b!.
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«~x,y!5«01luE~x,y!u2 ~2!

in cylinders.
In this paper, we use the method of multiple scatter

@10,11#, which is numerically exact, in conjunction with a
iterative scheme to solve Eqs.~1! and~2!. In performing the
multiple-scattering calculation, we divide every cylinder in
many cylindrical layers and assume the electric energy
each layer to be constant and equal to the mean intensi
that layer. The validity of this assumption was checked
Ref. @9#. Thus, the dielectric constant in thenth cylinder can
be written as

«nm5«01l^uE~x,y!u2&nm , ~3!

where the subscriptm represents themth layer of that cylin-
der and^uE(x,y)u2&nm denotes the mean value ofuE(x,y)u2

in the mth layer of thenth cylinder. The iterative procedur
is briefly described as follows. From the value ofE( i )(x,y)
of the i th step we obtain«nm

( i 11)5«01l^uE( i )(x,y)u2&nm

from Eq. ~3!. With this «nm
( i 11) we obtainE( i 11)(x,y) of the

( i 11)th step from the multiple-scattering method@10,11#.
The above procedure is repeated until the relative va
u«nm

( i 11)2«nm
( i ) u/«nm

( i ) is smaller than a required valued ~in this
work we taked51024). For the sake of convergence, it
necessary to use«̃nm

( i 11)5«nm
( i 11)1(«nm

( i 11)2«nm
( i ) )r to replace

«nm
( i 11) , wherer ,1 is a relaxation factor that should be ch

sen appropriately in the calculation. In our calculations,
choose«0513 andl520.001, which are usually used in th
literature.

In this paper, we use two types of light source to exc
the gap solitons. One is the slit source, which is position
outside the sample, and the other one is a point source, w
is positioned inside the sample. For a slit parallel to thy
03660
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axis with a widthd and center position located at (x0 ,y0),
the electric field in the near field can be expressed as@10#

E~x,y!5a0S kb

4 D E
2d/2

d/2

dy8S H0~kbr!1 i
x2x0

r
H1~kbr! D ,

~4!

where r5A(x2x0)21(y2y02y8)2, kb5(v/c)A«b, and
a0 represents the incident amplitude. The functionHm with
m50 and 1 is the Hankel function of the first kind. For
point source positioned at (x0 ,y0), the near-field electric
field is given by

E~x,y!5a0H0~kbr̃ !, ~5!

where r̃5A(x2x0)21(y2y0)2 and a0 represents the inci-
dent amplitude.

III. RESULTS AND DISCUSSION

First, we give briefly the linear properties of the squa
photonic crystal considered here. Figure 1~a! shows the band
structures forE-polarized light. There exists a full gap ex
tending from f̃ [ f a/c50.405 to f̃ 50.494, wheref̃ is the
dimensionless frequency. Figure 1~b! shows the transmission
spectrum of a slit beam incident upon the crystal shown
the inset of Fig. 1~b! along theG-M direction from the left
face. Here, the transmission coefficient of a slit beam is c
culated according to Eq.~11! of Ref. @10#. The transmission
spectrum indicates a stop band extending fromf̃ 50.405 to
0.569, which agrees excellently with the position of the p
tial gap along theG-M direction shown in Fig. 1~a!. In Fig.
1~c! we plot the total radiation powerPs in all directions
from a point source with the amplitudea051 located near
1-2
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EXCITATION OF GAP SOLITONS, SOLITON TRAINS, . . . PHYSICAL REVIEW E 69, 036601 ~2004!
the center of the sample in the inset of Fig. 1~b!. The gap
position in the radiation power spectrum also agrees w
with that of the full gap shown in Fig. 1~a!. Below we will
present the results for nonlinear photonic crystals for b
slit and point source illuminations.

A. Slit source

Here we are interested in the gap solitons inside the
gap near the lower band edge, i.e.,f̃ 50.405 at theM sym-
metry point, which corresponds to pointA in the band struc-
tures shown in Fig. 1~a!. To excite such gap solitons, it i
convenient to use the sample shown in the inset of Fig. 1~b!,
where the normal of each face is along theG-M direction.

First, we consider an external slit beam at a fix
frequency incident upon the sample shown in the in
of Fig. 1~b! from the left face. In Fig. 2~a! we show the
transmission coefficient as a function of the incident a
plitude a0 for f̃ 50.407. Figure 2~b! is the corresponding
total energy accumulated inside the sample, i.e.,U
5 1

2 *«(x,y)uE(x,y)u2dx dy. When the incident amplitude
a0 is very small~for example, pointA!, the sample is in the
linear regime. The beam is in the reflecting state andU is
very small. Asa0 is increased fromA to B, the beam is still
in the highly reflecting state, butU increases continuously
At point B the beam jumps to the transmitting stateC, andU
jumps to a higher value. If we decreasea0 from C, a maxi-
mum of the transmission coefficient occurs atD8. U
changes little along the pathCD8 although the incident am
plitude a0 decreases a lot. Figure 3~a! shows the intensity
distribution atD8 of the maximum transmission, which co

FIG. 2. Transmission coefficient~a! and total energyU accumu-
lated inside the sample~b! as a function of the incident amplitud
a0 of a slit beam with widthd52.828a and dimensionless fre
quencyf a/c50.407 in the nonlinear sample shown in the inset
Fig. 1~b!. U has the same units asa0

2a2.
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responds to a single-soliton state. At pointC if we do not
decrease but continue to increasea0 , we find that the trans-
mission coefficient increases continuously toD and then
jumps suddenly fromD to E. The correspondingU follows
the similar path and jumps to a much higher value atE. At
point E, when we decreasea0 , we arrive at another maxi
mum of the transmission atL. As before,U changes little
along the pathEL. At E if we continue to increasea0 another
jump from F to G occurs for both the transmission coeffi
cient andU. A decrease ina0 leads to a maximum of the
transmission coefficient atK. PointsH, I, andJ are obtained
in a similar way. It is seen from Fig. 2~a! that, in some region
of the incident amplitudea0 , multistability of the transmis-
sion coefficient occurs in the finite-sized sample. The spa
intensity distributions inside the sample at pointsL, K, andJ
are shown in Figs. 3~b!, 3~c!, and 3~d!, respectively. They
correspond to two-, three-, and four-soliton states, which
called soliton trains and similar to those observed in 1D
perlattices@5#. Note that these soliton trains are arrang
along the propagating direction of the beam, i.e., along
G-M direction. If the sample size is enlarged along theG-M
direction, we obtained similar transmission behavior to t
shown in Fig. 2 and similar intensity distributions to tho
shown in Fig. 3. For the case of the single-soliton st
shown in Fig. 3~a!, we do not find any changes in the spat
size or energy of the excitation, except that the position
the excitation is moved to the center of the enlarged sam
It will be shown later that the excitation of this mode
independent of the source configuration. Thus the locali

f FIG. 3. Intensity distributions~in arbitrary units! of the single-
gap soliton~a! and two-~b!, three-~c!, and four-soliton~d! trains
excited by a slit beam propagating along theG-M direction or two
slit beams oppositely propagating along theG-M direction in the
nonlinear sample shown in the inset of Fig. 1~b!.
1-3
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P. XIE AND Z.-Q. ZHANG PHYSICAL REVIEW E69, 036601 ~2004!
mode in Fig. 3~a! can be considered as an intrinsic excitati
of the photonic crystal of an infinite sample. However, this
not true for soliton trains. For instance, in the case of a tw
soliton train, the separation of two envelopes is found
increase with sample size. The spatial size of two envelo
is also found to increase with sample size, and tends to s
rate to that of the single-soliton state. It will been shown la
that two-soliton trains with different symmetries can also
excited in the same sample by using different source c
figurations. Thus, the soliton trains shown in Figs. 3~b!–3~d!
are specific to the sample used in the inset of Fig. 2~b! as
well as the source configuration. Unlike the single-solit
states, soliton trains cannot be considered as intrinsic ex
tions of an infinite photonic crystal. The size of each en
lope as well as their relative positions depend on both
source configuration and the sample geometry. In the limi
a large sample, the two envelopes in a two-soliton train
expected to decouple into two independent single-sol
states.

Figure 2 is obtained from a slit beam with widthd
52.828a. We see that the beam jumps from a nonpropag
ing state to a propagating state at the incident amplitudea0
510.24 ~point B!, which is denoted byuth1. The second
jump of the transmission coefficient occurs ata0511.17
~point D!, which is denoted byuth2. There are also thresh
olds uth3512.44 ~point F! and uth4514.29 ~point H!. We
emphasize that the solitons and soliton trains shown in Fi
can also be excited with slit beams of other widths, includ
a plane wave. In Fig. 4~a! we plot uthi ( i 51,2,3) as a func-
tion of beamwidthd for f̃ 50.407, whereuth1 is shown by
the solid curve,uth2 by the dotted curve, anduth3 by the
dashed curve. It is clearly seen that the values ofuthi increase
with decreasingd. To see the dependence of the total incide
energy flux at the thresholds on the beamwidth, in Fig. 4~b!
we plot uthi

2 d/2, which is proportional to the total inciden

energy flux, as a function ofd for f̃ 50.407. It is interesting
to note that there is an optimal beamwidthdopti ( i 51,2,3) at
which the total incident energy flux is the lowest. We see t
dopt1 is larger thandopt2 and dopt2 is larger thandopt3. This
trend is consistent with the fact that the size of the sin
localized envelope in Fig. 3~a! is larger than that in Fig. 3~b!
and the size of the single localized envelope in Fig. 3~b! is
larger than that in Fig. 3~c!. Careful observation shows tha
the values ofdopti are close to the diameters of the localiz
envelopes in the corresponding solitons and soliton tra
This assertion is also checked by the calculation of gap s
tons at other frequencies. For example, in Fig. 4~c!, we plot
uth1

2 d/2 as a function ofd for f̃ 50.406 ~dot-dashed line!, f̃

50.407~solid line!, and f̃ 50.409~long-dashed line!. We see
that the optimal beamwidth decreases as the frequenc
moved away from the gap edge, which is consistent with
fact that the size of the gap soliton is reduced as the
quency is moved into the gap.

Now we consider the case when the sample is illumina
simultaneously by two coherent beams of equal amplit
and equal width. We study the following two cases:~1! The
two beams are incident upon the crystal~along theG-M di-
rection! from the two opposite faces of the sample, e.g., o
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from the left and the other from the right;~2! the two beams
are perpendicular to each other, while both are along theG-M
direction, with one beam from the left face and the oth
from the upper face. For the former case, we obtain the s
solitons and soliton trains as shown in Fig. 3. The solito
and soliton trains excited by the latter source configurat
are shown in Figs. 5~a! and 5~b!. We note that, although the
position of the single soliton in Fig. 5~a! is different from
that in Fig. 3~a!, the spatial size and the energy of the g
soliton in Fig. 5~a! are the same as those in Fig. 3~a!. It
should be pointed out that the single solitons shown in F
3~a! and 5~a! are two equivalent excitations occurring at d
ferent locations in a sample. They are related by the tran
tional symmetry of the square lattice. However, the tw
soliton train found in Fig. 5~b! is along theG-X direction,
which is different from the two-soliton train shown in Fig
3~b!, where the two envelopes are arranged along theG-M
direction. In this case, they are not related by the rotatio
symmetry of the square lattice.

The excitation of a two-soliton train along theG-X direc-
tion is particularly interesting. This excitation actually corr
sponds to pointB in the band structures shown in Fig. 1~a!.
Since this point lies deep inside the partial gap along theG-X

FIG. 4. ~a! Thresholdsuth1 ~solid line!, uth1 ~dotted line!, and
uth1 ~dashed line! versusd for f a/c50.407.~b! uth1

2 d/2 ~solid line!,
uth2

2 d/2 ~dotted line!, and uth3
2 d/2 ~dashed line! versusd for f a/c

50.407. ~c! uth1
2 d/2 versusd for f a/c50.406 ~dot-dashed line!,

0.407~solid line!, and 0.409~long-dashed line!. uthi andd have the
same units asa0 anda, respectively.
1-4
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EXCITATION OF GAP SOLITONS, SOLITON TRAINS, . . . PHYSICAL REVIEW E 69, 036601 ~2004!
direction, it has a small evanescent decay length for an i
dent wave along theG-X direction. Thus, it is rather difficult
to excite this soliton train by using a single beam along
G-X direction. However, it can be easily excited by two pe
pendicular beams along theG-M direction as it is much
easier for the waves to penetrate into the system along
G-M direction. It is worth mentioning that the excitation o
gap solitons shown in Fig. 5 does not depend on the wid
of the two beams.

B. Point source

The above discussion has been devoted to the case w
the nonlinear crystal is excited by the external beam~s!. We
now turn to excitation by a point source that is position
inside the nonlinear crystal. As is known, in the linear lim
when the radiation frequency lies inside the band gap th
exists no far-field radiation energy from the point sour
However, in the nonlinear case, we expect that there ca
large radiation power via the formation of gap solitons. F
example, in Fig. 6 we plot the total radiation powerPs nor-
malized bya0

2 as a function of the amplitudea0 of Eq. ~5! at

f̃ 50.407 for three different positions of the point source
side the crystal shown in the inset of Fig. 1~b!, where the
dashed curve corresponds to the point source locate
(0,0.2a), the solid curve to (0,0.4a), and the dotted curve to
(0,0.6a), with the origin ~0,0! at the center of the centra
cylinder of the sample. Each source position gives rise t
hysteresis loop. Its threshold value increases with the
tance between the source location and the nearest cylind
the sample. For the middle one, the normalized radia
powerPs /a0

2 follows the curveA→B→C→D with increas-
ing a0 . At point D, the curve continues according to the pa
D→E→B→A whena0 decreases~see the solid curve!. The
intensity distribution at pointE is shown in Fig. 7~a!. It is
clear that the excitation at pointE where the radiation powe
is a maximum corresponds to a single gap soliton. This
similar to the pointD8 shown in Fig. 2~a!, where the sample
is excited using a slit beam. In order to verify that this ex
tation is intrinsic, i.e., independent of the source configu
tion, we also examined the intensity profiles at pointsF and
G arising from different point source locations. It is foun
that, although the positions of the three excitations at po

FIG. 5. Intensity distribution~in arbitrary units! of the single-
gap soliton~a! and two-soliton train~b! excited by two slit beams
perpendicularly propagating along theG-M direction in the nonlin-
ear sample shown in the inset of Fig. 1~b!.
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E, F, andG are different, the spatial sizes and the energies
the three excitations are the same. Furthermore, they
have the same values as those shown in Figs. 3~a! and 5~a!
obtained by using outside illumination.

As we pointed out before in Fig. 6, the threshold of t
incident amplitudea0 ~e.g., pointC! at which the system
jumps from a nonradiating state to a radiating state depe
sensitively on the location of the point source. Considera
calculations show that this thresholdath is dependent only on
the distancel between the point source and the nearest c
inder lying near the center of the sample and is independ
of the orientation of the source position relative to the ne
est cylinder. In Fig. 8 we plot the threshold as a function
this distancel on a semilogarithmic scale. It is seen that t
threshold value increases nearly exponentially with the d
tancel. This result is related to the evanescent nature of

FIG. 6. The total dimensionless radiation powerPs /a0
2c as a

function of the amplitudea0 of a point source withf a/c50.407
located at (0,0.2a) ~dashed line! ~a!, (0,0.4a) ~solid line! ~b!, and
(0,0.6a) ~dotted line! ~c!, where the origin~0, 0! is at the center of
the central cylinder of the nonlinear sample shown in the inse
Fig. 1~b!. The radiation powerPs is the integrated far-field energ
flux defined in Ref.@10#.

FIG. 7. ~a! Intensity distribution ~in arbitrary units! of the
single-gap soliton excited by a point source located inside the n
linear sample shown in the inset of Fig. 1~b!. ~b! Intensity distribu-
tions ~in arbitrary units! of the four-soliton set excited by a poin
source located at the center of the nonlinear sample shown in
inset of Fig. 1~c!.
1-5
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waves inside the gap. In addition to the single gap soli
shown in Fig. 7~a!, we have also seen the excitation of tw
and three-soliton trains by using a point source. For exam
this can be achieved by increasing the incident amplitudea0
at pointD in Fig. 6, similar to the multistability curve show
in Fig. 2. However, in the most general case, the gap sol
trains we have observed are along theG-M direction, i.e., the
ones shown in Figs. 3~b! and 3~c!.

In order to excite soliton trains along theG-X direction,
we have to choose a symmetric sample such as the
shown in the inset of Fig. 1~c!. The point source is located o
two perpendicular symmetry lines of the sample~solid lines!,
but not at the center of the sample where the two solid li
meet. In this case, we are able to excite a two-soliton tr
along theG-X direction, similar to the one shown in Fig
5~b!. If we put the point source at the center of the sam
where the two solid lines meet, we also observe a differ
type of gap soliton, which is shown in Fig. 7~b!. This gap
soliton consists of four localized envelopes and can be ca
a four-soliton set. Compared to gap soliton trains, a soli
set has a higher rotational symmetry. It can be considere
a pair of two-soliton trains closely attached to each othe

Finally, we give an estimate of the source power requi
to excite the gap solitons presented in this paper. The K
coefficient l is related to the third nonlinear susceptibili
x (3) by the equationl512px (3) @12#. Thus froml520.001
we havex (3)'22.6531025 esu if the units of optical elec
tric field are chosen as statvolt/cm. The magnitude ofx (3) so

FIG. 8. The logarithm of the threshold of the point source a
plitudea0 as a function of the distancel from the point source to its
nearest cylinder which is located near the center of the nonlin
sample shown in the inset of Fig. 1~b!.
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chosen is smaller than that of GaAs (;6.531024 esu@12#,
p. 163!. Therefore, for this value ofx (3) the incident electric-
field amplitude, e.g.,a0510 shown in Fig. 2, corresponds t
a laser power ofI 5 1

2 c«0uE0u2'18 kW/cm2, where uE0u
5a0510 statvolt/cm.

IV. SUMMARY

We studied the excitation of gap solitons, soliton train
and soliton sets in finite-sized 2D photonic crystals in
square lattice by using two types of light source—slit a
point sources. For the slit source we studied three cases.
first case is that a beam is incident upon the crystal along
G-M direction. The second case is that two beams are i
dent upon two opposite faces of the crystal along theG-M
direction. The third case is that the two beams are incid
upon two adjacent faces of the crystal along theG-M direc-
tion. For the first and second cases, we obtained exactly
same soliton and soliton trains, which are arranged along
G-M direction. For the third case, we obtained a sing
soliton state that is related to the single-soliton state obtai
from the first two cases by translational symmetry. We a
obtained a two-soliton train along theG-X direction that is
different from the two-soliton train along theG-M direction
obtained in the first and second cases. They cannot be re
by the rotational symmetry of the system. In the case
single-beam incidence, we found the existence of an opti
beamwidth at which the threshold of the incident energy fl
is the smallest. The optimal beamwidth is close to the dia
eter of the localized envelope of the single soliton or t
localized envelope of the soliton trains.

For the case of a point source, we observed the excita
of single solitons and soliton trains along theG-M directions.
The threshold of the incident amplitude needed to excite
gap soliton is sensitively dependent on the position of
point source, and it is dependent only approximately on
distance from the point source to the nearest cylinder. T
threshold increases nearly exponentially with the distan
We can also excite the soliton trains along theG-X direction
if a symmetrical sample is chosen and the point source
located along the two symmetry axes of the sample. W
the point source is located at the center of the sample
different type of gap soliton can be excited. This soliton co
sists of a pair of closely attached two-soliton trains.
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