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Excitation of gap solitons, soliton trains, and soliton sets in finite-sized
two-dimensional photonic crystals

Ping Xie and Zhao-Qing Zhang
Department of Physics and Institute of Nano Science and Technology (INST), The Hong Kong University of Science
and Technology, Clear Water Bay, Hong Kong, China
(Received 15 August 2003; published 8 March 2004

We study in detail the excitation of gap solitons in finite-sized two-dimensional photonic crystals under
various kinds of source configuration, including two external beams along different incident directions and a
point source at different locations inside the sample. We find different types of gap solitons, such as soliton
trains along different symmetry axes of the photonic crystal and soliton sets with a higher rotational symmetry.
In the case of a single external beam, we find the existence of an optimal beardygdtr the excitation of
gap solitons, and the value df is close to the diameter of single localized envelopes of the excitation. In the
case of a point source, it is found that the excitation threshold depends only on the distance between the source
and the nearest cylinder, and its value increases nearly exponentially with distance.
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[. INTRODUCTION lar, we find soliton trains along thié-X direction by using a
source with two perpendicular beams along &1 direc-
Since YablonovitcH1] and Johr{2] first proposed that a tion. These soliton trains are difficult to excite by using a

periodic dielectric structuréphotonic crystal can exhibit a  single beam along thE-X direction. We also find a soliton
forbidden gap for the propagation of electromagnetic wavesset with a higher symmetry by using a point source located
photonic band gap materials have attracted considerable if?side the sample. A soliton set consists of a pair of two-
terest both theoretically and experimentdl8]. To employ solit(_)n trains attac_hed to each _other. I_n e}ddition, we have
the high-technology potential of the photonic crystal, it is stut_:hed the properties of gap ;ollton excitation. In the case of
also crucially important to achieve dynamical tunability of & Single external beam, we find that there exists an optimal
its band gap. One idea of dynamical tunability can be rea|TbeamW|dth at which the_threshold of the_mmdent energy_flux
ized by changing the light intensity in so-callednlinear is the smallest. The optimal beamwidth is close to the diam-

photonic crystalsRecently, much interest has been focuseamer of the localized envelopes of the excitation. In the case

on the studv of nonlinear optical broperties of photonic cr S_of a point source, we find that the threshold of the incident
tals [4] y P prop P y amplitude depends only on the distance between the point

. . . . source and the nearest cylinder and its threshold value in-
One of the important phenomena in nonlinear photonic

) . ) o ctreases nearly exponentially with distance.
crystals is the existence of nonlinearity-induced self-
organized localized states with frequency in the forbidden
gaps, which are usually called gap solitons. The term “gap Il. MODEL AND CALCULATION METHOD

soliton” was first introduced by Chen and Mills in their nu- \we consider a 2D square lattice of dielectric cylinders in
merical study of a one-dimensiondlD) Kerr nonlinear su- i, The radius of the cylinder ®=0.1a, with a the period

perlattice[5]. Later, much interest was focused on the studyof the lattice. The dielectric cylinders are Kerr nonlinear,
of gap solitons in 1D superlatticd§]. Recently, John and characterized by the usual, weak-field dielectric constgnt
Akozbek[7] showed the existence of gap solitons in 2D andand the Kerr coefficient. Two finite-sized photonic samples
3D nonlinear photonic crystals by using coupled-modeare used in our calculations, which are shown in the insets
theory, which is valid for small dielectric modulations. By of Figs. 1b) and Xc). The sample in Fig. (b) consists of
using the numerical Green's function, Mingaleev and11x11+11x10=231 cylinders and that in Fig.(d) consists
Kivshar[8] demonstrated the existence of stable gap solitongf 16x16=256 cylinders. We assume that the cylinders are
in a 2D photonic crystal with a large dielectric contrast. parallel to thez axis so that the crystal is characterized by the
However, it is also of considerable importance to study thejielectric constant(x,y). E-polarized light, with the fre-
excitation of gap solitons in finite-sized 2D photonic crystalsquencyw=2f, propagating in thex,y) plane satisfies the
using external sources, i.e., the coupling of external sourcelllowing Maxwell equation:

to the gap soliton. In our recent paper, we demonstrated the

excitation of a single gap soliton and soliton trains along the w2

I'-M direction by use of an external slit beam incident upon V2E(X,y)+ — &(X,y)E(X,y)=0, 1)

a finite-sized 2D photonic crystal in a square lattieé In ¢

the present work, we study in detail the excitation of gap

solitons in finite-sized 2D square photonic crystals using dif-whereE(x,y) is thez component of the electric field ards
ferent source configurations. Other types of soliton trainghe speed of light in vacuum. The dielectric constaft,y)
possessing different symmetries have been found. In particus taken as follows: e(x,y)=¢,=1 in air and
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FIG. 1. (a) Band structure oE-polarized wave for a square lattice of linear dielectoglinders with radiusR=0.1a and dielectric
constantsy=13 in air, wherea is the_period of the lattice(b) Transmission coefficient of a slit beam input from the left face of the linear
crystal depicted in the insefc) Total radiation power spectrum from a point source inside the linear sample shown in the iftset of

e(X,y)=geo+N|E(X,y)|? (2)  axis with a widthd and center position located atyyo),

the electric field in the near field can be expressefila$
[10,11], which is numerically exact, in conjunction with an E(xy)=ao

Ky\ (/2

]
iterative scheme to solve Eq4) and(2). In performing the
multiple-scattering calculation, we divide every cylinder into )
many cylindrical layers and assume the electric energy ifwhere p=/(x—Xg)*+(y—Yo—Y')? kb:(w/c)\/g_, and
each layer to be constant and equal to the mean intensity i, represents the incident amplitude. The functi®g with
that layer. The validity of this assumption was checked inm=0 and 1 is the Hankel function of the first kind. For a
Ref.[9]. Thus, the dielectric constant in tih cylinder can  point source positioned atx§,y,), the near-field electric
be written as field is given by

in cylinders.
In this paper, we use the method of multiple scattering

Xo

Ho(kpp) +i Hi(kpp) |,

enm=20T MIE(Y)[*)nm, 3 E(x,y) =aoHo(KeP), (5)

where the subscriph represents thenth layer of that cylin-
der and(|E(x,y)|?)nm denotes the mean value [E(x,y)|?
in the mth layer of thenth cylinder. The iterative procedure
is briefly described as follows. From the value ®f)(x,y)
of the ith step we obtaine! Y =eq+N(|ED(X,¥)|®)nm
from Eq. (3). With this sf{; D we obtainE(*1)(x,y) of the First, we give briefly the linear properties of the square
(i+1)th step from the multiple-scattering methptD,11]. photonic crystal considered here. Figufe)lshows the band
The above procedure is repeated until the relative valustructures forE-polarized light. There exists a full gap ex-
el i~ D176 is smaller than a required valu(in this  tending fromT=fa/c=0.405 tof=0.494, wheréf is the
work we takes=10"*). For the sake of convergence, it is dimensionless frequency. Figurél shows the transmission
necessary to usgl tV=gl11 1 (541 _ o0y 1o replace  spectrum of a slit beam incident upon the crystal shown in
e+ wherer <1 is a relaxation factor that should be cho- the inset of Fig. {b) along thel-M direction from the left
sen appropriate|y in the calculation. In our Ca|cu|a’[i0ns7 Weface. Here, the transmission coefficient of a slit beam is cal-
chooses =13 and\=—0.001, which are usually used in the culated according to Eq11) of Ref.[10]. The transmission
literature. spectrum indicates a stop band extending frbm0.405 to

In this paper, we use two types of light source to excite0.569, which agrees excellently with the position of the par-
the gap solitons. One is the slit source, which is positionedial gap along thd-M direction shown in Fig. ). In Fig.
outside the sample, and the other one is a point source, whickic) we plot the total radiation powePg in all directions
is positioned inside the sample. For a slit parallel to yhe from a point source with the amplitude,=1 located near

wherep=/(X—Xq)*+ (Y —Yo)* and a, represents the inci-
dent amplitude.

IlI. RESULTS AND DISCUSSION
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FIG. 2. Transmission coefficiei®) and total energy) accumu-

lated inside the samplé) as a function of the incident amplitude

ay of a slit beam with widthd=2.828& and dimensionless fre-

quencyfa/c=0.407 in the nonlinear sample shown in the inset of

Fig. 1(b). U has the same units aga®.

the center of the sample in the inset of Figb)l The gap

position in the radiation power spectrum also agrees we

with that of the full gap shown in Fig.(&). Below we will

present the results for nonlinear photonic crystals for bot

slit and point source illuminations.

A. Slit source

Here we are interested in the gap solitons inside the ful

gap near the lower band edge, i£=0.405 at theM sym-
metry point, which corresponds to poitin the band struc-
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(b)

(a)
(c) (d)
FIG. 3. Intensity distributiongin arbitrary unit$ of the single-
gap soliton(a) and two-(b), three-(c), and four-soliton(d) trains

excited by a slit beam propagating along thé/ direction or two
slit beams oppositely propagating along thev direction in the

IPonlinear sample shown in the inset of Figb)l

Hesponds to a single-soliton state. At poltif we do not

decrease but continue to increagg we find that the trans-
mission coefficient increases continuously Boand then

jumps suddenly fronD to E. The corresponding follows

the similar path and jumps to a much higher valuda#t
Point E, when we decreasa,, we arrive at another maxi-
mum of the transmission dt. As before,U changes little
along the patlEL. At E if we continue to increase, another

jump from F to G occurs for both the transmission coeffi-

tures shown in Fig. (B). To excite such gap solitons, it iS Gjent andU. A decrease i, leads to a maximum of the

convenient to use the sample shown in the inset of Rig), 1
where the normal of each face is along 1 direction.

First, we consider an external slit beam at a fixed
frequency incident upon the sample shown in the inset

of Fig. 1(b) from the left face. In Fig. @) we show the

transmission coefficient &. PointsH, |, andJ are obtained

in a similar way. It is seen from Fig.(@ that, in some region

of the incident amplitude,, multistability of the transmis-
ion coefficient occurs in the finite-sized sample. The spatial
intensity distributions inside the sample at poibf{K, andJ

transmission coefficient as a function of the incident aM-3re shown in Figs. ®), 3(c), and 3d), respectively. They

plitude a, for T=0.407. Figure @) is the corresponding
total energy accumulated inside the sample, i.¥.,
=3e(x,y)|E(x,y)|?dx dy. When the incident amplitude
ag is very small(for example, poin#), the sample is in the
linear regime. The beam is in the reflecting state &hi
very small. Asa, is increased fronA to B, the beam is still
in the highly reflecting state, bl increases continuously.
At point B the beam jumps to the transmitting st@eandU
jumps to a higher value. If we decreaagfrom C, a maxi-
mum of the transmission coefficient occurs @t. U
changes little along the patbD’ although the incident am-
plitude a, decreases a lot. Figurg& shows the intensity

correspond to two-, three-, and four-soliton states, which are
called soliton trains and similar to those observed in 1D su-
perlattices[5]. Note that these soliton trains are arranged
along the propagating direction of the beam, i.e., along the
I'-M direction. If the sample size is enlarged along Ih#&1
direction, we obtained similar transmission behavior to that
shown in Fig. 2 and similar intensity distributions to those
shown in Fig. 3. For the case of the single-soliton state
shown in Fig. 8a), we do not find any changes in the spatial
size or energy of the excitation, except that the position of
the excitation is moved to the center of the enlarged sample.
It will be shown later that the excitation of this mode is

distribution atD’ of the maximum transmission, which cor- independent of the source configuration. Thus the localized
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mode in Fig. 8a) can be considered as an intrinsic excitation D r——F—7——7T 17—

of the photonic crystal of an infinite sample. However, this is F - —-point F (a) |

not true for soliton trains. For instance, in the case of a two- 30 - 7

soliton train, the separation of two envelopes is found to I

increase with sample size. The spatial size of two envelopes £ 20 - 7

is also found to increase with sample size, and tends to satu- I .

rate to that of the single-soliton state. It will been shown later 10 - SSseoo oo ]

that two-soliton trains with different symmetries can also be o ]

excited in the same sample by using different source con- 0

figurations. Thus, the soliton trains shown in Fig&)3 3(d) 500 ; ;

are specific to the sample used in the inset of Fig) 2s i

well as the source configuration. Unlike the single-soliton 400

states, soliton trains cannot be considered as intrinsic excita- N g

tions of an infinite photonic crystal. The size of each enve- 5300 %

lope as well as their relative positions depend on both the £ I

source configuration and the sample geometry. In the limit of 200 -

a large sample, the two envelopes in a two-soliton train are i

expected to decouple into two independent single-soliton 100 ——————————

states. 500 — T T T T T " T T T T
Figure 2 is obtained from a slit beam with widih K — — fae=0.409 (c) 1

=2.82&. We see that the beam jumps from a nonpropagat- 400 - \ — - - f2/020.406 .

ing state to a propagating state at the incident amplitude
=10.24 (point B), which is denoted by,;. The second
jump of the transmission coefficient occurs &j=11.17
(point D), which is denoted byiy,,. There are also thresh-
olds ug3=12.44 (point F) and uy,,= 14.29 (point H). We ‘ . ‘
emphasize that the solitons and soliton trains shown in Fig. 3 0 2 4 6 8 10 12
can also be excited with slit beams of other widths, including
a plane wave. In Fig. (@) we plotuy,; (i=1,2,3) as a func-

tion of beamwidthd for f=0.407, whereuy, is shown by FIG. 4. () Thresholdsuy, (solid line), uy, (dotted ling, and
the solid curve,uy,, by the dotted curve, andyg by the  uy, (dashed lingversusd for fa/c=0.407.(b) uZ,d/2 (solid line),
dashed curve. It is clearly seen that the valuesypfincrease  uZ,d/2 (dotted ling, and uz;d/2 (dashed ling versusd for fa/c
with decreasingl. To see the dependence of the total incident=0.407. (c) uZ,d/2 versusd for fa/c=0.406 (dot-dashed ling
energy flux at the thresholds on the beamwidth, in Filp) 4 0.407(solid ling), and 0.409long-dashed ling uy,; andd have the
we plot u3;d/2, which is proportional to the total incident same units as, anda, respectively.

energy flux, as a function af for f=0.407. It is interesting
to note that there is an optimal beamwidtl; (i=1,2,3) at
which the total incident energy flux is the lowest. We see thadwection, with one beam from the left face and the other

dopra IS larger thandgp, anddopy is larger thandgys. This .
trend is consistent with the fact that the size of the singlefrom the upper face. For the former case, we obtain the same

localized envelope in Fig.(d) is larger than that in Fig.(8) solitons and soliton trains as shown in Fig. 3. The solitons
; pe In Fg. arg nF1g. and soliton trains excited by the latter source configuration
and the size of the single localized envelope in Fidp) 3s

larger than that in Fig. (8). Careful observation shows that are shown in Figs. @) and §b). We note that, although the

. . . position of the single soliton in Fig.(8) is different from
e elues oy e close o e dameters of e OCAIZECvat n i, 3, spatl size and th energy of e gap
This assertion is also checked by the calculation of gap soligomOn In Fig. §a) are the same as those in Figag It

; A should be pointed out that the single solitons shown in Figs.
tons at other frequencies. For example, in Fig) Awe plot 3(a) and 5a) are two equivalent excitations occurring at dif-

Uf,d/2 as a function of for f=0.406 (dot-dashed ling f  ferent locations in a sample. They are related by the transla-
=0.407(solid line), andf =0.409(long-dashed line We see tional symmetry of the square lattice. However, the two-
that the optimal beamwidth decreases as the frequency ®oliton train found in Fig. ) is along thel’-X direction,
moved away from the gap edge, which is consistent with thavhich is different from the two-soliton train shown in Fig.
fact that the size of the gap soliton is reduced as the fre3(b), where the two envelopes are arranged alongltié
guency is moved into the gap. direction. In this case, they are not related by the rotational
Now we consider the case when the sample is illuminatedymmetry of the square lattice.
simultaneously by two coherent beams of equal amplitude The excitation of a two-soliton train along theX direc-
and equal width. We study the following two casé€b: The  tion is particularly interesting. This excitation actually corre-
two beams are incident upon the crystalong thel-M di-  sponds to poinB in the band structures shown in Figal
rection from the two opposite faces of the sample, e.g., one&Since this point lies deep inside the partial gap alonde

d (in units of a)

from the left and the other from the righ®) the two beams
gre perpendicular to each other, while both are alond the
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FIG. 5. Intensity distribution(in arbitrary unit$ of the single- B
gap soliton(a) and two-soliton trainb) excited by two slit beams | ¢+ .
perpendicularly propagating along theM direction in the nonlin- 10 : B
ear sample shown in the inset of FighlL 0 10 20 30

direction, it has a small evanescent decay length for an inci-

dent wave along th&-X direction. Thus, it is rather difficult FIG. 6. The total dimensionless radiation powRy/ajc as a

to excite this soliton train by using a single beam along thefunction of the amplitudea, of a point source withfa/c=0.407
I'-X direction. However, it can be easily excited by two per-located at (0,0.2) (dashed ling (a), (0,0.4a) (solid line) (b), and
pendicular beams along thE-M direction as it is much (0,0.6a) (dotted ling (c), where the origin(0, 0) is at the center of
easier for the waves to penetrate into the system along tHBe central cylinder of the nonlipear sgmple shown i_n the inset of
I'-M direction. It is worth mentioning that the excitation of Fig- 1(b). The radiation powePs is the integrated far-field energy
gap solitons shown in Fig. 5 does not depend on the width8ux defined in Ref[10].

of the two beams. . o .
W E, F, andG are different, the spatial sizes and the energies of

the three excitations are the same. Furthermore, they also
have the same values as those shown in Fig®.ahd 5a)

The above discussion has been devoted to the case whebtained by using outside illumination.
the nonlinear crystal is excited by the external b&anmVe As we pointed out before in Fig. 6, the threshold of the
now turn to excitation by a point source that is positionedincident amplitudea, (e.g., pointC) at which the system
inside the nonlinear crystal. As is known, in the linear limit, jumps from a nonradiating state to a radiating state depends
when the radiation frequency lies inside the band gap thersensitively on the location of the point source. Considerable
exists no far-field radiation energy from the point source.calculations show that this threshalg, is dependent only on
However, in the nonlinear case, we expect that there can biae distancd between the point source and the nearest cyl-
large radiation power via the formation of gap solitons. Forinder lying near the center of the sample and is independent
example, in Fig. 6 we plot the total radiation powy nor-  of the orientation of the source position relative to the near-
malized byaS as a function of the amplitude, of Eq.(5) at  est cylinder. In Fig. 8 we plot the threshold as a function of

T=0.407 for three different positions of the point source in-this distancd on a semilogarithmic scale. It_is seen that th_e
side the crystal shown in the inset of Figbl, where the threshold yalue increases nearly exponentially with the dis-
(0,0.2a), the solid curve to (0,0&), and the dotted curve to

(0,0.6a), with the origin (0,0) at the center of the central (a) (b)

cylinder of the sample. Each source position gives rise to @
hysteresis loop. Its threshold value increases with the dis:
tance between the source location and the nearest cylinder ¢
the sample. For the middle one, the normalized radiation
power P/a2 follows the curveA— B— C—D with increas-
ing ag. At point D, the curve continues according to the path
D—E—B—A whena, decreasessee the solid curyeThe
intensity distribution at poinE is shown in Fig. 7). It is
clear that the excitation at poit where the radiation power
is @ maximum corresponds to a single gap soliton. This is
similar to the poinD’ shown in Fig. 2a), where the sample FIG. 7. (@ Intensity distribution(in arbitrary unit$ of the

is excited using a slit beam. In order to verify that this exci-single-gap soliton excited by a point source located inside the non-
tation is intrinsic, i.e., independent of the source configuratinear sample shown in the inset of Figbl (b) Intensity distribu-
tion, we also examined the intensity profiles at poiatand  tions (in arbitrary unit$ of the four-soliton set excited by a point

G arising from different point source locations. It is found source located at the center of the nonlinear sample shown in the
that, although the positions of the three excitations at pointsset of Fig. 1c).

B. Point source

036601-5
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3.5 L e chosen is smaller than that of GaAs 6.5x 10 % esu[12],

p. 163. Therefore, for this value 0f®) the incident electric-
field amplitude, e.g.ag=10 shown in Fig. 2, corresponds to
30 1 a laser power ofl =3cso|Eq|?~18 kW/cn?, where |Ey|
=ay= 10 statvolt/cm.

25 . IV. SUMMARY

In(a,)

We studied the excitation of gap solitons, soliton trains,
and soliton sets in finite-sized 2D photonic crystals in a
2.0 iy square lattice by using two types of light source—slit and
point sources. For the slit source we studied three cases. The
first case is that a beam is incident upon the crystal along the
15 —_— I'-M direction. The second case is that two beams are inci-
0.1 02 0:3 . 0.4 05 0.6 dent upon two opposite faces of the crystal along Ithl

| (in units of a) direction. The third case is that the two beams are incident

FIG. 8. The logarithm of the threshold of the point source am-UPON two adjacent faces of the crystal along th#/ direc-
plitudea, as a function of the distanddrom the point source toits  tiON. For the first and second cases, we obtained exactly the

nearest cylinder which is located near the center of the nonlineaf@me soliton and soliton trains, which are arranged along the
sample shown in the inset of Fig(td. I'-M direction. For the third case, we obtained a single-
soliton state that is related to the single-soliton state obtained
r{rom the first two cases by translational symmetry. We also
obtained a two-soliton train along tHéX direction that is
éjifferent from the two-soliton train along tHé-M direction
Obtained in the first and second cases. They cannot be related
by the rotational symmetry of the system. In the case of
gingle-beam incidence, we found the existence of an optimal
beamwidth at which the threshold of the incident energy flux
is the smallest. The optimal beamwidth is close to the diam-
eter of the localized envelope of the single soliton or the
r{gcalized envelope of the soliton trains.

For the case of a point source, we observed the excitation
of single solitons and soliton trains along thev directions.

but not at the center of the sample where the two solid Iineg’he threshold of the incident amplitude needed to excite the

meet. In this case, we are able to excite a two-soliton traifpaP soliton is sen_sitjvely dependent on the position of the
along theI'-X direction, similar to the one shown in Fig. point source, and it is dependent only approximately on the

5(b). If we put the point source at the center of the sample(j's‘t"’mce fr.om the point source to th? neart_ast cyllnd_er. The
reshold increases nearly exponentially with the distance.

where the two solid lines meet, we also observe a diﬁeren{l]/\jl | e th liton trai I fhe directi
type of gap soliton, which is shown in Fig(bj. This gap € can aiso excite the soliton trains along Irection

soliton consists of four localized envelopes and can be calle a ts;:jmnlwetrlcg]l s?mple IS chtosen andft?he point Tou\r/?/ﬁ IS
a four-soliton set. Compared to gap soliton trains, a solito ocated ajong the two Symmetry axes of the sample. en

set has a higher rotational symmetry. It can be considered %ge point source is Ioc.ated at the center of _the gample, a

a pair of two-soliton trains closely attached to each other. !ﬁerent typg of gap soliton can be exmtec_i. This §0I|t0n con-
Finally, we give an estimate of the source power required‘sIStS of a pair of closely attached two-soliton trains.

to excite the gap solitons presented in this paper. The Kerr

coefficient\ is related to the third nonlinear susceptibility

x® by the equation. = 127y [12]. Thus from\=-0.001

we havey(®)~ —2.65x 10" ° esu if the units of optical elec- This work was supported by Hong Kong Research Grants

tric field are chosen as statvolt/cm. The magnitudg@f so  Council Grant No. CA02/03/SCO1.

waves inside the gap. In addition to the single gap solito
shown in Fig. Ta), we have also seen the excitation of two-
and three-soliton trains by using a point source. For exampl
this can be achieved by increasing the incident amplitude
at pointD in Fig. 6, similar to the multistability curve shown
in Fig. 2. However, in the most general case, the gap solito
trains we have observed are along th# direction, i.e., the
ones shown in Figs.(B) and 3c).

In order to excite soliton trains along theX direction,
we have to choose a symmetric sample such as the o
shown in the inset of Fig.(t). The point source is located on
two perpendicular symmetry lines of the sam(selid lines,
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